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1.0 INTRODUCTION
Motivated by the increasing demands on theoretical seismology to under-
stand and explain the propagation of waves in complex environments,
much research has been devoted over the last few years to developing
computationally efficient techniques with as much generality as possible.
Although the differential equations of motion are linear in the field
quantities of interest, they are non-linear in terms of the boundary
conditions for most realistic structures. This fundamental nonlinearity
precludes construction of the solution for complex structures by super-
positon of the solutions for simple structures, and forces one into
computationally costly schemes.

Techniques for dealing with this fundamental nonlinearity have spanned
the range from the crudest classical ray tracing approach to the
computational -bound finite difference type methods. However, no single
technique has ever proven entirely satisfactory for reasons of accuracy,
completeness of solution, generality of application, cost or combinations
thereof. For example, in cases where significant diffraction and inter-
ference effects require "exact" solutions, finite difference techniques
have received widespread use. Yet, the finite difference approach is
well known for its cumbersome computational demands in two dimensions
and almost insurmountable computational demands in three dimensions
even on the fastest computers available today.

The heavy computation requirements of the finite difference type
methods are created by the necessity of refining the numerical grid
proportionately to the wavelengths of interest in all spatial directions,
including regions of constant material properties. For problems
involving wave propagation in irregular layers of constant material
properties within each layer, however, the Boundary Integral Equation
(BIE) approach provides a more concise and efficient formulation.
Basically, the BIE formulation takes advantage of the fact that the
propagation of waves through a region of constant material properties
can be treated analytically, leaving only the interactions at the
bounding surfaces to be treated numerically. Rather than imposing a

grid over the entire volume, the BIE method only requires gridding of

SGI-R-83-083
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the interfaces between regions of constant material properties. Not

only are there potential savings in computational effort to solve a

smaller systems of equations, but the formulation represents a concise

treatment of the pertinent physics involved. By virtue of this

contraction of information, the smaller matrices in the BIE formulations

are much denser than the corresponding matrices in the finite

difference approach. These dense matrices are typically poorly

conditioned and must be given careful consideration during

implementation of matrix solution techniques to avoid numerical

instabilities.

Various techniques have appeared in the literature for dealing with the

dense matrices in the BIE approach. One technique involves

introduction of a Kirchhoff approximation into the BIE formalism (eg.,

Berryhill, 1979; Scott and Helmberger, 1982). In the Kirchhoff

approximation the interaction between neighboring points on a boundary

is ignored by locally approximating the boundary at each sample point

by the tangent plane at that point and then using plane wave reflection

and transmission coefficients to compute the unknown boundary values.

Sierra Geophysics has added two important modifications to this classical

Kirchhoff approximation: (1) definition of a locally equivalent incident

pulse from the neighboring boundary allowing for some diffraction

effects which would otherwise be neglected; (2) formulation in terms of

a series of two-layer problems allowing higher order multiples to be

computed by recursively propagating the boundary values up and down

the stack of layers so that the computational cost increases

&- proportionately to the number of layers rather than the square of the

number of layers.

Even with the improved Kirchhoff approximation, one is still confronted

with the poor conditioning and denseness of the matrices used to

propagate the boundary values forward to the desired positions. Also,

waves involving multiple interactions with a single boundary are

neglected except for the pseudo-diffraction effects which are not exact.

Therefore more rigorous techniques are required to deal with the full

system of boundary integral equations. A time domain treatment of the

SGI -R-83-083
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full system of equations has been successfully addressed by Cole (1980)
for two-dimensional acoustical problems in geophysics. Cole's approach
becomes expensive at high frequencies or for late arriving signals as

the product of the frequency step times the time step must be less than

about 10 to maintain stability. More importantly, the formulation does

not handle the dense matrices efficiently, precluding generalization to
three-dimensional elastic multilayered problems. Also, it is difficult to

include realistic material attenuation and to suppress late arriving

spurious reflections off the artificial extremities of the grid using a time
domain formulation. Significant breakthroughs have been made at

Sierra Geophysics in deriving an iterative frequency domain treatment

of the full system of equations that overcomes these shortcomings.

The iterative BIE treatment deals with the dense singular matrix

equations from a perturbation point of view with respect to the flat

layer solution. Using the perturbation approach, all inverse matrix

operations are reduced to simpler deconvolution operations, which are

optimally handled using Fourier transform algorithms. Also, spurious

edge effects are either removed completely or to first order (in which

case Fourier tapering is used to remove higher order effects) depending

on the slope of the extremities of the boundaries. Another feature

that makes three-dimensional problems feasible with the frequency

domain approach is the computational savings experienced in varying

the numerical grid spacing as a function of frequency reducing the size

of the matrix equations at low frequency relative to high frequency.

Furthermore, geometrical spreading and material attenuation behavior

can be invoked at high frenuency where appropriate to reduce the size

of the matrix equations by eliminating the noncontributing interaction

terms. This has the desirable feature of allowing the iterative BIE

solution to execute as efficiently as tlhe approximate Kirchhoff or

geometrical ray solutions in the high frequency limit.

The basic methodology common to all the BIE techniques is presented in

Chapter 2. The formulation is completely general for three-dimensional

elastic media containing any number of irregularly shaped layers

including the limit of zero thickness pinchouts. A discrete grid is

SGI -R-83-083
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imposed and the resulting BIE matrix equations are discussed in terms
of denseness and singularity considerations. The Kirchhoff BIE
solution technique developed at Sierra Geophysics as discussed above is

presented in Section 3.1 including the enhancements to include
pseudo-diffraction effects and permit linear cost dependence on the
number of layers. Sample problems solved with this Kirchhoff

technique are presented in Section 3.2. The more exact iterative BIE
solution technique developed at Sierra Geophysics as discussed above is

presented in Section 4.1. Sample problems solved with the iterative
BIE technique are presented in Figure 4.2 including comparisons
showing the deficiencies of the Kirchoff technique as well as the

convergence behavior of the iterative approach. A brief discussion of
the current status and future extensions of the iterative BIE technique

is discussed in Chapter 5 with a reference list following in Chapter 6.

SGI -R-83-0834
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2.0 GENERAL FORMULATION OF BIE METHODOLOGY

The boundary integral equations describing wave propagation through

arbitrary three-dimensional elastic multilayered media are derived in two

steps. First, the known characterization of wave propagation within a

single irregular layer is written in terms of integral representations

involving the full space Green's functions with properties of that layer.

Second, the interaction of the wavefield is simultaneously imposed at all

boundaries to satisfy all boundary and continuity conditions leading to a
system of Fredholm integral equations of the second kind for the

unknown boundary values. Once this system of equations is solved for

the boundary values, the wavefield may be propagated from the

boundaries to all receiver positions of interest within a given layer

using the integral representations of the first step.

The model geometry for the wave propagation problem solved in the BIE
formulation is depicted in Figure 1 by N irregular layers overlying a
semi-infinite half-space. The layers are allowed to pinchout but not to

cross in this formulation. Each layer is characterized by constant

shear and compressional wave velocities and constant densities.

Material attenuation may be introduced by allowing the velocities to be
complex. Wave propagation within a given layer is expressed in terms

of the Green's functions for a full-space with the properties of that

layer. The formulation is not restricted to constant material properties

within a given layer, although the Green's functions for that case are

quite simple. The formulation is carried out for the full elastic case

and the corresponding acoustic formulation is obtainable from the

derived equations by replacing the vector equations with scalar

equations.

The first step in the formulation is to write expressions for the

displacement field within a single layer without consideration of the
boundary Interaction. In layer £ (£=1,2,...,N+1), the displacement

vector must satisfy the homogeneous (A s) or inhomogeneous (2=s)
equations of motion (depending on whether or not the source is located
in layer 1) for a fu. soac, .h properties of layer A. The

Representation Theorem of " astot.ynamics (see, for example, deHoop,

SGI-R-83-083
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1958) provides an expression for the displacement vector located any-

where within volume V £ containing layer 2 in terms of integrals of the

displacement and traction field over the bounding surface of volume VI

times the corresponding Green's functions for a full-space with

properties of that layer. The i-component of displacement at location

-x can then be written in the frequency domain using the

Representation Theorem for a volume V2 bounded by layer interfaces $2

and S9+ 1 .

S(XI) Ui(x£ = f ji(Ix )j~ye ) -Ti_,y2)U(ye ) dS('y)

S2

e( 1+1* J [G'e.(-x.>Y )T. (y2+ 1) H (X ) (;e+,)J dS('Ye

+ 6£Ys f Gji(x ,z I)fj(z£2) 1dV (I£1

V f (i,j=1,2,3)

in which the summation over repeated indices is understood, the

frequency arguments have been omitted for brevity and

an integration point on bounding surface Sm;

•~ Gj(x9, m  the j-component of the ful-space Green's
31 function displacement vector at location m

on surface S mdue to poit force in the
i-direction at location xI with properties of
layer e;

H j(xgym) =the j-component of the corresponding Green'sHJi x£function traction vector formed from the

inner-product of the kj-componeni of the
Green's function stress tensor G.k.. at location m
on surface S with the k-componpK 1of the
unit upward normal mvk at point ym(summing
over k=1,2,3);

SGI -R-83-083
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um(y, = he j-component of displacement at location
J ym on surface Sm;

T (ym ) = the j-component of the corresponding tractionj m at location y on surface S formed from the

inner-product of the kj-component of the
stress tensor with the k-componint of the
unit upward normal v at point y (summing
over k=1,2,3);

fj(Z 9 = the j-comRonent of the source function at
location ze anywhere in layer £ (assuming the
source is a Delta-function in space, then the
volume integral reduces to the evaluation of
the integrand at point z2 );

£s = O, if I S
6, if ts ,s = source layer number;1, if l=s

1, if 91 inside layer 2
(x= , if X on surface bounding layer 2.

0, if x outside layer 2.

In Eq. (1), the layer comprising volume V29 is assumed to extend to
infinity at the horizontal extremes to eliminate the surface integrals

along those portions of the surface bounding volume VY and the nega-
tive sign for the integral over surface Sk+ 1 is associated with using the

upward normal v _v in the definition of the traction components.
Once the boundary values for Uim(; ) and Tm(; ) are determined for

bounding interfaces SJ and SJ+1, Eq. (1) can then be used to obtain

the displacement field at any point x2 within layer 2. Expressions for
the full-space Green's functions with constant material properties are
given in Appendix A for two and three dimensional wave propagation in

elastic as well as acoustic media. This completes the propagation step

of the BIE formulation and what remains is to impose the boundary

interaction coupling.

The boundary interaction coupling requires simultaneous satisfaction of
a tractionless free surface (interface 1) and continuous displacements
and tractions across each layer interface (2,3,...,N+1). The coupled

SGI-R-83-083
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boundary integral equations arising from the zero tractions conditions

along the free surface are obtained by evaluating Eq. (1) in volume V 1

(layer 1) at a discrete number (ql) of observation points X1 along

surface SI and imposing the zero traction condition T (I)= 0 (j=1,2,3)

for all quadrature points yl on surface Si to yield:

s 1 1Iu( 1  = 1f [Hj;,Y.)!YI1 dSG 1)

-f [Gji(X1 2 )T y 2 ) - Hji(X1 ,Y2)U (y2)] dS(Y2)

S2

+ 61 ,sFi6 ) I (-'.j=1,2,3), (2)

in which the direct source contribution (if s=1) is

Fi(x = f Gi(XlZlf(Z 1 ) dV(Z). (3)

v1

Equations (2) represent a simultaneous set of 3q, Fredholm integral

equations of the second kind for the same number of unknown dis-

placement boundary values U., j=1,2,3, on surface S1, which are

coupled to the unknown boundary values on surface S2 through the

integral over surface S2. Note that if half-space Green's functions

were used in layer 1 instead of the full-space Green's functions, then

the terms involving the traction Green's function, H.., would not be
ji

present leading to a simpler form of the free surface boundary integral

equations. However, analytic expressions for the half-space Green's

functions are only available for a special class of two-dimensional

problems and hence will not be introduced for layer 1 to maintain

generality and consistency in the formulation.

4

SGI-R-83-083
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The coupled boundary integral equations arising from the continuity

conditions across each layer interface, S2 (9=2,3,... ,N+1), are obtained

by evaluating Eq. (1) in volumes V . 1 and V2 (layers 2-1 and 2) at a

discrete number (q2 ) of observations x. along common surface S. and
imposing the natural boundary conditions of continuous displacements

and tractions:

. (x A J(xA ) and T (x) = (x£)

for j=1,2,3 and for all quadrature points y. on surface S, to yield:

[G r2-1 4 + -1 4  1- 1 . > -141
.(x ] (X ,Y2 _)T. (y£_ 1 ) - H. l(x 9 21 )U. - (Y4 dSCy2 1)

se I

- [G x£:1_,,y)T 1 (y)- . (xH,y y)1 dS(y)I9 Lj2'i A- 4 A jU 2  Y,
S.

and

' 12 "4 f[ £ "+ - £(? 2 4 4 2 4 1 £"+)l "Suix) [ £ £ £ - H (x,y)U(y dS(y

S2

-J 1 i(x2 ,Y+ 1)Tj(YI+I) - }ILi(x 2 ,YA+1)Uj(Y 2+I) dS(y2 +I
S2-1

+ 6I's Fi(XI) , (i,j=1,2,3), (2=2,3,...,N+1). (4b)

Equations (4) represent a simultaneous set of 6q, Fredholm integral

equations of the second kind for the same number of unknown dis-

placement and traction boundary values, U and TY, j=,2,3, on surface

5£ which are coupled to the unknown boundary values on surface S 1

SGI-R-83-083
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and S+ 1  through the integrals over surfaces S£. 1 and S e+l

respectively. Note that when £=2 in Eqs. (4a), then the term involving

T.-1 (£ 1> ) is identically zero because of the tractionless free surfacej Y -

conditions. Also, note that when £=N+1 in Eqs. (4b), then the integral

over surface S2+1 vanishes by virtue of the radiation conditions implicit

in the Green's functions for the underlying semi-infinite space.

Boundary integral equations (2) and (4) are evaluated at a discrete set

of q£ example points xI on each boundary SI with sample points from

one boundary becoming Green's function quadrature points for the next

boundary. When completely discretized, equations (2) and (4)

represent a coupled system of singular Fredholm integral equations of

the second kind for the unknown boundary values along all layer

boundaries. The singularities occur in the Green's functions when

quadrature point ym approaches observation point xm in the second
integral in Eqs. (4a) and the first integral in Eqs. (2) and (4b).

Singularities can also occur in the Green's functions when two adjacent

layer boundaries intersect and would be evidenced in the first integral

in Eqs. (4a) or the second integral of Eqs. (2) or (4b), depending on

where the intersections occur. An equivalent BIE formulation using

integral representations for the traction components as well as the

displacement components leads to a system of Fredholm integral

equations of the first kind instead of the second kind. At first this

appears to be a simpler formulation, but in fact requires more book-

keeping and computational effort in dealing with the higher order

singularities arising from the derivations of the stress Green's function

components. The singularities are of the lowest order possible using

the present BIE formulation in terms of Fredholm integral equations of

the second kind and are rigorously handled using the iterative BIE

solution technique discussed in Section 4.1.

To complete the general formulation, the discretized boundary integral

equations are cast into matrix form:

[I]{Ul = [H]{U) -[GI{T) + (F} (5)

SGI-R-83-083
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The vectors [U} and {T) contain all the unknown boundary values

along all layer boundaries:

{U) = {LI ){U2 ... {UN+I ; {T} = [T2 },IT 3} ...,ITN+ }

in which {UAI are subvectors containing the 3q 2 unknown displacement

boundary values along interface 2 (k=1,2,...,N+1) and {TI are sub-

vectors containing the 3q, unknown traction boundary values along

interface 2 (2=2,3,...,N+1). The vector IF} contains the direct source

contributions along interfaces s and s-1 above and below source layer

S:

{F} = {0},{0},...,{Fs),{Fs+l},{0),{0}...

in which {Fs I is the subvector containing the direct upgoing source

field evaluated at 3qs sample points in Eqs. (2) or (4b) depending on

whether s=1 or s=2,3,...,N+1, respectively, and {F s+l is the sub-

vector containing the direct downgoing source field evaluated at 3qs+1
sample points in Eqs. (4a) if s=1,2,...,N.

The matrix [I] contains the factors of (1/2) from the left-hand

sides of Eqs. (2) and (4) and is of the following block diagonal form:

[z2][13] 0
3 1J

[3]

[I I

N+11

in which [IJ are 3qx3q2 identity submatrices (A=1,2,...,N+1); all

other submatrices of [I] are zero. The matrix [H) contains the traction

SGI-R-83-083
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Green's function components times the quadrature coefficients from the

discretized integrals in Eqs. (2) and (4) and is of the following block

tri-diagonal form:

I-H Ill I

[-H 1 ] [ H,2]
H 1 2,2 111

[-H3 2', [ H2,]

0

, 2 ] [  3, 3 ][-H 3 If H 3 ,

34 ,- ,,N

[H][-Hl 2[1 0 _,+

1~- k, k['+I] H I +I+]

I_+1N I I,~

in which 1Hm] (mn-, ,i+1) are 3 q x3 q_ submatrices involving theAm A
traction Green's function components H i(x ,Ym ) for a full-space with

ji i" m

properties of layer n for n=1,2,...,N+l; all other submatrices of [H]

are zero.

The matrix (G] contains the displacement Green's functions times the

quadrature coefficients from the discretized integrals in Eqs. (2) and

(4) and is of the following block tri-diagonal form:

I SGI-R-83-083
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G i2
G1 G 2

-GI, G2 ,2

[-G2 1[ G 
2

[-Gaa3[ G3,4

G]= [-G,2.11[ G ,2]

[-G + A

N

[-GN+I,N+I ]

in which [GnmJ (m=-1,2,2+1) are 3qjx3 qm submatrices involving the

displacement Green's function components Gji nfom) r a full-space
with properties of layer n for n=1,2,...,N+l; all other submatrices of

? 1
[G] are zero and submatrices [G21 ] (1=1,2) are not used in the

j $ formulation because the known zero tractions along the free surface
have been removed from the integral equations.

The matrix equation represented by Eq. (5) must be solved at each
t frequency value of interest for the unknown displacement and traction

boundary values {U} and {T) along all discrete sample points. Once
solved, the displacement field is easily obtained at additional sample

point (if desired) by evaluation Eq. (1) at locations x in layer I in

C terms of the known displacement and traction boundary values from the

surrounding layer interfaces. If desired, time histories are obtained

SGI-R-83-083
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through discrete Fourier synthesis by storing the solved boundary

values at the required frequency values.

Equation 5 is the so-called dense matrix equation referred to in

Chapter 1 and being of lower dimensionality, but higher density than

the corresponding matrix equation obtained from full volume gridding in

the finite difference of finite element approaches. For purposes of

comparing the respective storage requirements only, assume that the

number of sample points q£ along all interfaces S. (k=1,2,...,N+1) is a

constant equal to q. Then the BIE formulation represents a system of

(6N+3)q equations for the (6N+3)q unknown boundary values in contrast

to being proportional to q 2 in finite difference methods for 2-D

calculations, indicating a potentially large savings in computational

effort with all other cost parameters held constant. This potential

savings is experienced when the number of layers N is less than the

number of vertical wavelengths being resolved in the finite difference

approach, which is almost always quite substantial especially at high

frequencies and/or for deep layered structures. The actual storage

requirements for the two techniques are comparable with the BIE
2formulation having (72N-18)q +(6N+3)q nonzero matrix entries and the

finite difference formulation also being proportional to q for 2-D

calculations. For 3-D calculations, both methods add another

multiplicative factor of q to the number of equations and storage

requirements, indicating the same amount of potential savings in 3-D as

in 2-D for the BIE method. Therefore all that is entailed to reach the

full potential in computational savings is being able to efficiently and
0 stably deal with the smaller, but denser, matrices in the BIE

formulation.

As mentioned previously, matrix Eq. (5) has singularities arising fromS
the Green's functions when source and receiver point coincide in this

formulation. Therefore careful treatment of this dense matrix equation

is required to avoid potential numerical instabilities. A modified

Kirchhoff solution technique is derived in Section 3.1 for dealing with

this dense singular matrix equations in an appropriate manner. Various

local and/or high frequency assumptions are made that decouple

-p SGI-R-83-083
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adjacent sample points on a given layer boundary resulting in an

approximate solution applicable where dynamic effects of interaction of

the wavefield with a boundary are not important. A more exact

iterative BIE solution technique is derived in Section 4.1 by analytically

subtracting off the singularities and solving the system of equations

from a perturbation point of view with respect to flat layers. The

iterative BIE solution technique not only handles the singularities, but

includes all boundary interactions and also effectively deals with the

denseness of the matrix equations.

wi
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3.0 SOLUTION USING MODIFIED KIRCHHOFF APPROXIMATION
In this chapter, a modified Kirchhoff approximation is used to solve the
general BIE problem formulated in Chapter 2. The solution technique is
described in Section 3.1. Included is a discussion of two important
enhancements that make Sierra Geophysics' technique more general and
efficient than the conventional Kirchhoff treatments. Also the major
shortcomings are discussed such as exclusion of head waves and
diffraction of post-critical waves and limitation on the proximity of two
adjacent boundaries. For a more rigorous treatment of the general BIE
problem, the reader is referred to Chapter 4.

Sample applications are presented in Section 3.2 showing the versatility
and flexibility of the Kirchhoff algorithm. In the first example, the
Kirchhoff algorithm is used to demonstrate the near-source structural
effects on body waves at the Nevada Test Site. In the second example,
the Kirchhoff code is used to demonstrate the effects of basins on
earthquake strong ground motions. Comparisons to the more rigorous
iterative BIE solution are made in Section 4.2.

3.1 Methodology

In the approximate Kirchhoff treatment of the general BIE problem
presented in Chapter 2, the interaction of the propagating wavefield

$3 with the boundaries is only considered locally with no interaction
between neighboring points on a single boundary. At each boundary
point, the interaction of the incident wave with the boundary is
calculated as though the local portion of the incident wavefield were
part of a plane wave and the local portion of the interacting boundary
were a flat plane with unit normals defined by the tangent to the local
boundary. Thereby the boundary iteraction reduces to simple
convolutional form which can be handled analytically allowing the
boundary values at that point to be computed from the local direction
and amplitude of the equivalent incident plane wave through simple use
of plane wave reflection and transmission coefficients. In general,

these coefficients change as a function of frequency and position on the
boundary. The definition of a pointwise equivalent incident wave field

SGI -R-83-0813
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is unique in Sierra Geophysics' Kirchhoff solution technique and is an

important enhancement for including some diffraction effects which
would otherwise be neglected. The shortcomings in the conventional

Kirchhoff approximation arise from propagating the field from each

discrete point on the adjacent surface to the local boundary point,

calculating the boundary values at that point using the

reflection/transmission coefficients and then summing the individual

contributions at that point with a significant number of those

contributions originating from post-critical angles.

A second feature unique in Sierra Geophysics' Kirchhoff solution

technique is the recursive approach to the propagation of the boundary

values through a stack of layers. The first step in the recursive

procedure is to propagate the source field once through the stack of

layers applying the Kirchhoff approximation point by point and saving

all the boundary values. Next, the propagation direction is reversed

with the upgoing boundary values along surface 1 propagated back

down through the stack of layers and/or the dlowngoing boundary

values along surface N+1 propagated back up through the stack of

layers. This provides first order reflections and the process of

recursively cascading up and down through the stack of layers is

repeated, updating the upgoing and dlowngoing boundary values at each

interface until as many orders of multiple reflections are included as

desired. The last step is then to combine the updated upgoing and

dlowngoing boundary values at all boundary points from which the

boundary values may be propagated to any position(s) of interest within
I I any layer using the Green's function integral representations discussed

in step one of the general BIE formulation in Chapter 2. This second

unique feature not only reduces the total storage requirements because

only two interfaces need be considered simultaneously, but also allows

the computational effort to be linearly proportional to both the desired

order number of the multiple reflections and the number of layers in

the stack (in contrast to the number of layers squared).

This Kirchhoff solution technique may be viewed as a ray expansion for

BIE methods and bears a strong resemblance to geometrical optics (see,
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for example, Hong and Helmberger, 1978). in fact, geometrical optics
can be derived as high frequency approximation to the Kirchhoff

formulation, indicating that with proper grid resolution, the Kirchhoff
approximation will provide highly accurate results in domains where
geometrical optics is valid (eg., at high frequency and angles away
from critical where there is little communication between adjacent
boundary points). In domains where optics breaks down, the Kirchhoff
approximation still provides reasonable results. For example, optics
gives abrupt, discontinuous behavior at shadow zone boundaries,
whereas the Kirchhoff approximation exhibits continuous, frequency
dependent behavior expected from diffraction theory. The Kirchhoff
solution is most reliable in situations dominated by kinematic effects,
becoming increasingly inaccurate (amplitudes more so than arrival times)
where dynamic effects become important. These dynamic effects are
related to multiple interactions of the wavefield with a boundary such as
head waves and diffraction of post-critical waves). In such cases
where dynamic effects are important, the more exact iterative BIE

solution technique described in Section 4.1 is recommended.

The approximate Kirchhoff solution technique can be derived at a given

frequency from the general BIE formulation in Eq. (5) of Chapter 2,
although the more conventional derivation is in terms of the equivalent

*potential f ield BIE firmulation. The basis of the Kirchhoff

approximation ib Lu find a set of assumptions that will dlecouple the
interaction of the wavefield at a point on a boundary from all other

points on that boundary and cast the equations into convolutional form.
This is accomplished by assuming that the boundary is sufficiently

smooth in the vicinity of a sample point to locally allow the boundary

geometry to be represented by a flat plane with unit normals defined by
the tangent at that sample point. By virtue of the local smoothness

*assumption, the boundary values and Green's functions will be slowly
varying as a function of distance from this sample point. In particular,

with tangent plane representations of the 'oa boundary geometry, the

traction Green's function terms which involve normal derivatives across
the boundary may be discarded at all sample points (i.e., the term

involving the matrix [H] in Eq. (5) may be discarded). It is further
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assumed that the tangent plane lies sufficiently close to the global

boundary so that the offsets along the normal direction between the

tangent plane and the discrete quadrature points may be disregarded so

that the integration over the original boundary can be carried out in

the local tangent plane coordinates. This reduces all vector inner

products of the submatrices [G m,1, m=£-1,2 and [G k 1, m=e,1 with

subvectors {Tk}, 2=2,3,... N+1, to simple convolutional form.

Therewith, Eq. (5) can be rewritten as

[I]{U + [G]{T = {F , (6)

in which each row of matrix [G] corresponds to the flat plane Green's

function operator at a given sample point obtained by rotating and

translating the original Cartesian coordinate system into the local

tangent plane coordinates. The solution of this system of equations can

therefore be handled quite effectively by analytically applying two-

dimensional Fourier transforms in the local tangent plane coordinates,

reducing the problem to simple deconvolutional division operations.

As an example, the form of the deconvolutional coefficients will be

derived for interaction at a boundary in 3-D structures. The Green's

functions in the local coordinates x,y of the tangent plane are obtained

from Appendix A by letting R = Ix-yl (x2 y2) . Then the two-

dimensional Fourier transform of the Green's function G(x,y) takes the
form

00 O -ik R iklx ik2y
g(klk 2  f f (I/R)e e e dx dy, (7a)

in which ka is the wavenumber defined by frequency (w) divided by

acoustic velocity (a) of the layer. Then introducing the Sommerfeld

representation
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-ik R 
00

e = k J0(kR)dK (7b)
(k -k1 )

into Eq. (7a) and using the identity

ik X 2 cosly(k 2 -k) 2

j 0[k(x 2y 2 e dx = 2 _2 ' 1

- 0 1  (7c )

0, O<k<k

to integrate over x leads to:

f f 2 cos[k -kl)l ]  k ik2Y
g(kk 2) (k 22 e dk dy. (7d)

_o(k kkOf

Finally, introducing the change of variables k=(k2 -ki) , the integral

over y in Eq. (7d) requires that k'=k2 for a nontrivial integral leading

to the final form for the deconvolutional coefficients in the transform

domain:

g(k =k 2n[k2+k2-k = -2ni/v (7e)

in which v a is the vertical wavenumber for acoustic velocity o (i.e.,

cosine of the angle of emergence divided by e). If one were dealing

with potentials instead of displacements and tractions, this would allow

the unknown potentials to be solved in terms of the familiar plane wave

reflection and transmission coefficients at the artificial tangent plane

boundary. For example, consider the solution of the downgoing

potential field and its normal derivative do.,/dn in the transform
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domain (kl,k ,w) at each point along a boundary S with a source in

layer £-1. The pair of boundary integral equations for the two

unknowns at this point takes the form

i do9-1 (k1 Ik2 )
2-l(klk 2) + dn.= ZF R-1(k19k2)

(7f)
i do jz(kil '2)

4e(kl'k 2 ) + V t9,dn k0

Then applying the natural boundary conditions

d9a1- Pd-I d€£
-dn 0pa d (7g)

equation (7f) reduces to two equations in the two unknowns and

doQ/dn, which immediately yields to the solution:

*(k 1 'k2 ) = T-' F 1 = (I+R-9, 1  ) F- 1  (

d (ki k = ivaI Te-,k F2-1

in which

V - v /p 2V_ /p -1

R =.-,= v /_i/-P + -+ v /p9 (7i)

are the plane wave reflection and transmission coefficients at boundary

S£ given in terms of ratios of vertical wavenumber divided by density,

va/p., for layers £-1 and k, respectively; the vertical wavenumbers,

Va, are in turn given in terms of the wavenumber transform variables

(kl,k2 ), the frequency w and the acoustic velocities a 1 and a.,

respectively, as defined in Eq. (7f).
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Returning to the system of Kirchhoff integral equations in Eq. (6) for

the unknown displacement and traction boundary values, the solution

could be calculated directly by solving the system of equations in the

wavenumber transform domain to yield

{U,T} = [I,G 0]-{F} (8)

in which the identity and convolutional submatrices have been combined

into a square matrix and the unknown displacement and traction

boundary values have been combined into a single vector. The inverse

matrix operation appearing in Eq. (8) actually reduces to a

deconvolutional problem in the wavenumber transform domain; however,

the total computational effort is proportional to the number of layers

squared. To reduce this squared dependence on the number of layers,

the Kirchhoff solution is modified so that only two layers need to be

considered at a time leading to a linear dependence on the number of

layers.

The reduction to linear cost dependence on the number of layers is

made possible by realizing the Eq. (6) is only valid locally or at high

frequencies and therefore the coupling from interfaces separated by

more than one layer can be ignored without affecting the Kirchhoff

solution substantially. To obtain the first order Kirchhoff solution, the

direct source field is propagated once through the stack of layers with

the boundary interaction considered one interface at a time involving

only the propagated field from the previous boundary (or the direct

source field for the interface above or below the source) and the

boundary values along that interface. If the source is located in the

underlying half-space (layer N+1), this gives the upgoing boundary

values for the direct arrivals only; conversely if the source is located

in layer 1, this gives the direct downgoing boundary values; for

sources in intermediate layer £, this gives the direct upgoing boundary

values along surfaces t,£-1, .. ,1 and the direct downgoing boundary

values along surfaces £+1,k+2,..,N+1
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Assuming that the source is located in layer P, the direct upgoing

boundary values at interface £ above the source are found by solving

the following pair of equations

{U l0 + [G = to)

1 U~o e, k1 0
U (9a)

[2 IT} k= J

in the wavenumber transform domain at each decoupled sample point

analogously to the example in Eqs. (7a) through (7i); if the source is

in layer 1, only the second equation is present. The analogous pair of

equations for the direct downgoing boundary values at interface +1

(2=1,2,...,N) are given by

I d +2 d
2U+11 0 +  (9b)+1'2+]IT +1} = F0

1 {U Id + Ig ]T Id = to)

0 0

The vector subscripts 0 in Eqs. (9a) and (9b) represent the zero order

Kirchhoff solution and the vector superscripts u and d represent the

t upgoing and downgoing boundary values, respectively. The zero order

(n=0) upgoing boundary values for Eq. (9a) are propagated up to the

free surface by solving the following pair of equations in the wave-

number transform domain one interface at a time (i=-1,2-2,...
II

{in+ u~ HTV

1 U - [H.-.. ] _ ,.-+[6. _ (bOa)
-{. +[G 1{T - i+1 i+1

2 i n i i n i,i+l i+1 l ii+1 +1

For i=1, only the second equation in Eq. (10a) is present and again the

displacements equal twice the upgoing field. In all cases, the right-

h.nd side of Eq. (10a) is known from the solution at the previous

interface. The analogous pair of equations for the zero order (n=0)

downgoing boundary values for successive interfaces i=2+2, e+3,...,N+l
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I Gdi-]Ti}d = iI d [G i-I ]IT dSdi ii I d n  Hi'i-llUi-iln i'i-1 n (lOb)
I d + d(1b!{U }nd, [G.,i][Ti~d = {0}

2u in +Gi , i1 i )n= 0

At this stage, the upgoing and downgoing boundary values have been

calculated and stored at all sample points for the zero order (n=0)

solution, which represents the direct arrivals from the source (no
higher order multiple reflections). If higher order multiples are

desired, the recursive cascading process is performed. The next order

solution (n) is obtained by reversing the propagation direction from the
previous pass through the layers. The downgoing boundary values

from interface N+1 in Eq. (10b) are used in the right-hand side of

Eq. (10a) for i=N and the upgoing boundary values are calculated

interface by interface (i=N,N-I,...2,1) for the next order reflection

and added to any previously calculated upgoing boundary values.

Analogously, the upgoing boundary values from interface 1 in Eq. (10a)

are used in the right-hand side of Eq. (10b) for i=2 and the downgoing

boundary values are calculated interface by interface (i=2,3,...,N,N+1)

for this next order reflection and added to any previously calculated

downgoing boundary values.

Note for the first order (n=l) reflections only, the direct arrival terms

(n=0) are zero for the upgoing boundary values along surfaces below

the source (k+1,k+2,..,N) and for the downgoing boundary values

along surfaces above the source (

After the cascading process is complete up to the desired reflection

order, the total boundary values for the modified Kirchhoff solution are

obtained by adding the upgoing and downgoing boundary values along

each interface, i=1,2,...,N+1:

IT = ITl + Iui)d

{T.} ={T.}n +

Then the displacement field at any additional locations within any layer
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is obtained at this frequency by introducing the boundary values from

Eq. (11) into the representation theorem of Eq. (1). Time domain

results, if desired, would be obtained through Fourier synthesis by

calculating modified the Kirchhoff solution at a discrete set of frequency

values.

Alternatively, one can formulate the Kirchhoff solution directly in the

time domain using time domain analogs of the full-space frequency

domain Green's functions given in Appendix A to perform the

propagation between boundaries. The boundary interaction at a local

point on surface S9is accomplished by performing a plane wave

decomposition of the incoming wave field in the local tangent plane

coordinates. The effective angle of incidence of the equivalent incoming

plane wave at a local boundary point is determined from the following

plane wave identity in the local tangent plane coordinates

dl ,/dn -iwv dO./dt

by solving for the vertical wavenumber v., (i.e., cosine of angle of

emergence divided by velocity) at each time point. This permits

pointwise application of the reflection and transmission coefficients to

the equivalent incoming wave field from an adjacent boundary, reducing

spurious arrivals from integration points beyond critical angle.

3.2 Results

A time domain Kirchhoff algorithm has been developed using the

methodology outlined in Section 3.1 and has been tested and applied to

a number of interesting geologic models. The algorithm is quite

general, allowing for three-dimensional multilayered elastic model

specifications. The limitations on the model input include a requirement

that the minimum distance between two boundaries be greater than the

surface sampling distance and a precaution that the results become

unreliable for steeply dipping structures or any other situation

involving multiple interactions of the wavefield with the boundary. A

direct comparison is made in Section 4.2 between the Kirchhoff solution
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and the more rigorous iterative BIE solution, graphically displaying

some of these deficiencies. The Kirchhoff algorithm performs all its
operations for fully 3-D models. However, the demonstrational
applications presented in this section involve models with constant
material properties perpendicular to the vertical 2-D plane defining the

layer properties.

In the first application, the Kirchhoff algorithm was used to show the

near-source structural effects on body waves in the vicinity of Yucca
Flats at the Nevada Test Site (Mellman, et al., 1982). The simulated
results were shown to reproduce the gross features observed in wave-

form variation and amplitude variation across the northern portion of
the basin, solely by modeling the interference effects from the layer
discontinuity along the Cenozoic-Paleozoic basement contact. In the
southern portion of the basin, however, the steeply dipping sidewalls
cast some doubts on the reliability of the Kirchhoff results and the

comparisons between synthetics and observations were less satisfactory.

A contour map of the depth to the Paleozoic contact at Yucca Flats has
been determined by Herrin and Goforth (1981) as shown in Figure 2.

The line A-A' is chosen to be perpendicular to the major axis of the
basin, in a region which is essentially two-dimensional in nature. This

allows for results obtained on line A-A' to be applied to nearby source

locations with some degree of confidence. A cross-section view, along
line A-A', of the model is shown in Figure 3. Squares represent grid

points, while the normals to the surface at each grid point designated
by a short line segment at each grid point. Note that irregular grid

spacing has been deployed to provide improved accuracy and efficiency.

Source locations are chosen along line A-A' and are uniformly spaced at
a depth of 550 meters as shown on the artificial intermediate layer

boundary with source locations numbered from west to east. The sides
of the basin are tapered at a depth of 200 meters to prevent numerical

instabilities associated with boundaries being too close. The material

properties in the tuff layer represent an average of saturated and
unsaturated values, because the water table interface occurring at a

constant depth of about 500 meters was removed from the model to
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37014.62' 3 7*14 5 2

116 013.28 ' 15052 84'

I0
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36053.53' 360 53.42'
116 013.4 1' 1150 53.05'

Figure 2. Contour map of Cenezoic-Paleozoic contact for Yucca Flats
are determined by Herrin et al. Line A-A' corresponds to
cross section shown in modeling plots. Locations 1-9 are
selected events used in waveform comparisons.
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accommodate the basin tapering. The P and S wave velocities and
density in the tuff layer are accordingly set to 2.4 km/sec, 1.4 km/sec

3and 2.2 gm/cm , respectively, and the corresponding values in the
Paleozoic zone are 4.8 km/sec, 2.8 km/sec and 2.6 gm/cm3

Reciprocity arguments are involved such that incident planes waves with
ray parameter of .07 sec/km provide synthetic seismograms at tele-

seismic receiver distances of about 60 degress due to the source
locations displayed along line A-A' of Figure 3. The synthetic seis-

mograms are shown in Figures 4, 5 and 6 for receivers located in
azimuths west, north and east of the basin, respectively. In each
case, the response at the far field station is displayed due to every
fifth source location on line A-A'. The time series correspond to

realistic explosion source seismograms because the impulse response
Kirchhoff solution has been convolved with a von Seggern and

Blandford (1972) time function characterized by k=10 and B=2, an

attenuation operator (Futterman, 1966) characterized by t*=.6, a typical
receiver function (Lundquist and Kam, 1982) and a KS instrument
response. In all cases reflections of up to order two have been

included by making three passes through the layers.

The large, early arriving reflection from source 1 interferes
constructively with the multiple reflections from the western portion of

the basin in Figure 4, giving rise to the focussed (narrow) first trough
and second peak in the waveform. The greater delay of this reflection
off the bottom and side of the basin for sources located closer to the

center of the basin (eg., sources 11 and 16) results in defocussing

(broadening) of the waveform, an attendant decrease in amplitude, and
the development of an inflection in the second peak. Near the eastern

portion of the basin (eg., sources 21 and 26), there is an increase in
amplitude and decrease in pulse width due to the proximity of the
eastern wall. The corresponding synthetic seismograms for the north-
ern and eastern azimuths are shown in Figures 5 and 6. In general

there is a somewhat reduced amplitude and waveform variation in these
azimuths as a function of source location across the basin. The
predicted amplitude and waveform variations in all three azimuths are
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NTS BASIN-WEST AZIMUTH

EXPLOSION SOURCE

ROW COL

15 1

00

2 1
02 3 V4

Figure 4. Synthetic seismograms in the Western azimuth for model in
Figure 3 using SRO instrument, von Seggern-Blandford
source function with k=10, B=2, receiver function for

* station E from E. Kazakh events and additional attenuation
operator with t*=.6 seconds.
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NTS BASIN-NORTH AZIMUTH

EXPLOSION SOURCE

ROW COL.

15 1

.1 1M~: 44.

4 1

21
0 1 3 4 0b7

2 6

Figure 5. Synthetic seismograms, as in Figure 4 but the North
azimuth.
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NTS BASIN-EAST AZIMUTH

EXPLOSION SOURCE

RON (,CL

15 1

11

21 1 1

Figure 6. Synthetic seismograms, as in Figure 4 but for East azimuth.
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consistent with observations from the nine underground nuclear
explosions located near line A-A' (refer to Figure 2 for the locations
and to Mellman, et al., 1982, for the comparisons between observations

and synthetics). The synthetic seismograms located in a southern
azimuth (not shown) were found to be less satisfactory in reproducing

the general trends in the observations in that region. This is
presumably due to the presence of extreme dips in the near-source

structure of that area, which is not properly handled with the
Kirchhoff solution technique. The Kirchhoff code proved instrumental
in relating the observed amplitude and waveform variations at Yucca
Flats to interference effects of known shallow structure rather than to

focussing caused by deeper structure.

In a similar study, the effects of basins on earthquake strong ground
motions were investigated using the Kirchhoff algorithm (Hadley, 1982).
Figure 7 shows an example calculation for a simple basin model with the

earthquake source located beneath the basin. The incident energy is
from the right side of the basin, propagating parallel to the indicated

arrow. The P-wave velocity in the layer is 2 km/sec and the basement
velocity is 4 km/sec. As in the Yucca Flats study, the calculations
include two internal multiple reflections within the structure. The

absolute levels of motion and variability of ground shaking caused by
the basin structure are evidenced in the displayed synthetic

seismograms superimposed at seven receiver locations across the basin.
Note the long duration and large amplitudes of the simulated records
along the left half of the basin in the direction of the incoming energy.

J I Amplifications by the basin structure caused by focusing is responsible

for the amplitude variations of about a factor of three.
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Figure 7. Waveforms and relative amplitudes for a wave incident at a
shallow angle from the right (arrow). The synthetic time
histories have been calculated with the Kirchhoff technique
and includes two multiples within the basin. Note the
factor of 3 increase in amplitude caused by structure.
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4., SOLUTION USING RIGOROUS ITERATIVE BIE APPROACH

In this chapter, a rigorous iterative approach is used to solve the

general BIE problem formulated in Chapter 2. The solution technique is

described in Section 4.1. Included is a discussion of how the

singularities are handled in the general formulation which leads to an

iterative treatment based on perturbing the model from a flat layer

point of view. The matrix equation becomes well conditioned and

numerically tractable after the singularities have been removed and all

matrix inversion operations are reduced to simpler deconvolutional

operations by virtue of the iterative solution approach. The solution

provides kinematic and dynamic effects equally accurately at low and

high frequencies and handles incident waves beyond critical angle and

even layer pinchouts.

Sample applications are presented in Section 4.2 for the simple cases of

waves impinging on an irregular free-surface of a semi-infinite half-

space and transmission through an irregular interface for a single layer

overlying a semi-infinite half-space. The convergence of the BIE

solution is demonstrated and comparisons are shown with the

approximate Kirchhoff solution. The deficiencies of the Kirchhoff

approximation are easily identified from these simple models and the

zero order iteration is shown to provide results more accurate thAn the

approximate Kirchhoff solution. Applications to more complicated models

are discussed in Chapter 5.

4.1 Methodology

In the iterative frequency domain treatment of the general BIE problem

presented in Chapter 2, the interaction of the propagating wavefield

with the boundaries is satisfied globally including rigorous interaction

between neighboring points on a single boundary. The first step in

deriving the iterative BIE solution is to remove the singularities from

the Green's functions in Eq. (5). These singularities occur when a

quadrature point along boundary £ coincides with a sample point along

boundary £ and are evidenced along the diagonal elements of sub-

matrices [G nJ and [H n ,£] for £=2,3,...,N+1 and n=k-1,£ (eg., when
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sample point x £ coincides with quadrature point y2 in the second

integral of Eq. (4a) and the first integral of Eqs. (2) and (4b)). This

is typically the case in the general BIE formulation because it is

desirable to be able to use the same sample points as quadrature points

in propagating the boundary values from interface 9 to interfaces 9-1

and Y+1. Singularities can also occur when two interfaces pinchout so

that a quadrature point on an adjacent boundary (9+1 or k-1) coincides

with a sample point along boundary Y. If pinchouts exist in the model,

these singularities would be evidenced in certain elements of

submatrices [Gn , and [H+n or [G ,2 ] nn and [Hn_ ](eg"

when sample point x coincides with quadrature points y 2+1 or y.,_ 1 in

the first integral of Eq. (4a) or in the second integral of Eqs. (2) or

(4b), depending on which two layers are pinching out). Even if the

sample points were slightly offset from the quadrature points, the

matrix would still be too ill-conditioned to be numerically tractable.

Basically there are three techniques for dealing with these singularities

with various degrees of generality and effectiveness. One method

would be to deal with the singularities directly by invoking various

smoothness criteria and taking principal values. This has the distinct

disadvantages of reducing flexibility in the formulation and of being

unstable and inefficient during applications. A second method would be

to express the unknown displacement and traction boundary values in

terms of integral representations of unknown forces located on deformed

surfaces interior to the actual bounding surfaces and then to solve for

the set of unknown forces that simultaneously satisfies all the boundary

and continuity conditions (see, for example, Ohsaki, 1973 and Part II of

Apsel, 1979). In general, this treatment is quite effective because the

singularities are avoided altogether except for layer pinchouts (or very

thin layers) because some quadrature points on the deformed surface

would still coincide some of the sample points (or be so close that the

system of equations becomes ill-conditioned). If it weren't for the

possibility of layer pinchouts, the equivalent force treatment would be

useful because of the simpler formulation and the elimination of the need

to evaluate and deal with the spatial derivatives of the stress Green's

function components in the traction integral representations.
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The third method, which is the preferred choice, involves analytically

subtracting off the singularities from the Green's functions using the

flat layer Green's functions and iteratively solving the complete BIE

problem with the flat layer solution as a starting solution on the first

iteration. This has the distinct advantages of removing the

singularities under all situations, properly conditioning the dense BIE

matrix and replacing the matrix inversion operations involving the dense

BIE matrix with simple dleconvolution operations that are handled quite

efficiently using Fourier transform techniques.

Another important advantage of using this approach to remove the

singularities is the simple provision for dealing with potentially spurious

edge effects arising from the necessarily finite horizontal extremes of

the model when carrying out the successive iterations on the solution.

For layer boundaries converging to the depth of the artificial flat layer,

the integrals along those extremities go identically to zero by virtue of

the perturbation formulation. For those boundaries converging to a

constant depth different than that of the flat layer, the first order

edge effects are still removed leaving higher order effects governed by

the ratio of the horizontal distance from sample point to quadrature

point divided by the vertical offset from the flat layer (indicating that

the higher order edge effects can be removed either by integrating

along this extremity until the offset ratio is sufficiently small or by

tapering the diminishing Green's function perturbations). For those

- boundaries deviating from the artificial flat layer at the extremities of

the model, tapering will be necessary on the nonvanishing Green's

function perturbations unless the model can be extended until the layer

boundaries eventually approach zero dip. For the zero order iteration,

tapering will typically be required at the extremities of the artificial flat

boundaries to obtain the flat layer solution (unless geometrical

spreading or material attenuation behavior are sufficient to truncate the

integrals without tapering). In any case, it is quite straightforward to

avoid spurious edge effects in Sierra Geophysics' iterative BIE solution.

This is in direct contrast to finite difference of finite element

techniques or other BIE solution techniques where either appropriate

nonreflect*-ng boundary conditions must be used (such as in Scheuster's
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(1983) BIE solution) or else the model grid must be extended far

beyond the region of interest (such as in Cole's (1980) time domain BIE

solution) so that the spurious edge reflections arrive sufficiently late

not to contaminate the signal of interest.

The iterative solution technique at a given frequency for the general

BIE formulation in Eq. (5) is derived by first subtracting off the

singularities. This is effectively accomplished by reformulating the

general BIE problem in terms of a perturbation problem with respect to

flat layers. The matrix equation for the flat layer problem in which the

flat layers are passed through the reference planes of the original

irregular layers is written as

[I]{Uo} = [Ho]{U o } - [G]{T0 } {F } I (12)

in which [U 1, {T }, [F 1, [G o and [H ] have the analogous

definitions as in Eq. (5) for the flat layer problem instead of the

irregular layered problem. In the limit as sample point and quadrature

point coincide, the singular elements of [G ] and [H ] exactly approach

the singular elements of [G] and [H], respectively. Therefore, if the

original BIE problem could be recast in terms of the perturbation

matrices [G-G o and [H-H ], formed by analytically subtracting the

nontrivial elements of [G 0 and [H 0 from the corresponding elements of

[G] and [H], then all singularities would be automatically handled.

As an example, consider the form of the singularities arising from

interaction of the wavefield with a boundary in 2-D acoustic structures.

The horizontal sample position on the irregular boundary is defined by

the coordinates (x,z), with z being a function of x. The artificial flat

layer is defined at a constant depth of z = z0 and integration is carried

out along the boundary over all quadrature points x o . The singularity

arises in the imaginary part of the Hankel functions of order zero and

one when quadrature point x0 approaches sample point x in [G].

Then, when the perturbation matrix [G-G 0 and [H-H 0 are formed, the
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difference of the imaginary parts of the singular elements (irregular

operator minus flat operator) has the following form including the

quadrature coefficients:

SYm[k/(x-xo) 2+(Z-Zo) 2 ]/+(dz/dx)2 
- Y tklx-xl 1] 1 dx , (m=0,1) (13)

in which Y (r) is the Bessel function of the second kind of order m

and k is the horizontal wavenumber equal to frequency divided by

acoustic velocity. Using the fact that Y 0 (r) ,- (2/n) ln(r) and that

Y (r) -- -(2/7t)/r in the limit as r goes to zero, it is straightforward to

prove (using l'H6spital's Rule) that the difference of the two terms in

Eq. (13) is identically zero in the limit as x approaches x0 . The entire

row of terms appearing in matrices [G-G ] and [H-H 0 for other values

of x in Eq. (13) are in fact better conditioned. The behavior at the

extremities of the boundary is also evident from Eq. (13). For

irregular boundaries converging to the artificial flat layer, coordinate z

approaches the constant z0 and the difference in Eq. (13) is identically

zero; for boundaries converging to a different constant depth, z1 , the

difference approaches zero as the absolute value of the ratio

(x-x 0 )/(Z l -z 0 ) increases.

6
The iterative BIE solution technique proceeds by rewriting Eq. (5)

without change by adding and subtracting the flat layer terms:

(IJIM+u = [fo+H 0 +uoI - [+G 0 {T+To} + {F+Fo} (14)

in which

1-0 = U , IT) = IT-T0  (15)

are the unknown perturbed displacement and traction boundary value

vectors, respectively;

[GJ = (G-Go, [R] = [H-H 01 (16)
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are the perturbed displacement and traction Green's function matrices;

and

{F} = {F-F 1 (17)
0

is the perturbed direct source field vector. Eq. (12) is then used

directly to simplify Eq. (14), which after rearranging, takes the form

[I]{U} - [H0 U} + IG O {T} = IH]{U+Uo } - [G{T+To 0 {F}, (18)

in which all matrices are nonsingular and well behaved: matrix [11

consists of identity and null submatrices; the rows of matrices [G 0 and

[Ho] are convolutional operators on vectors {T) and {Uj} for constant

material properties in each layer; and the rows of matrices [I] and [d]

are small and smoothly varying for structures not deviating too widely

from the reference flat layers.

Next, Eq. (18) is rewritten using more compact ontation:

[CII = [X1{ +xo} + IV (19)

in which vector (R} contains all the unknown perturbed boundary

values along all layer boundaries:

R = {U 1 ,{U 2 },1T2 },lU3 },{T3 }, ...,{UN+},{,TN+ 1  (20)

where subvectors (3 } contains the 3q, unknown perturbed dis-
placement boundary values (u-u ) along interface k (A=1,2,...,N+1) and

subvectors {.) contain the 3% unknown perturbed traction boundary

values (T-T o ) along interface £ (2=2,3,...,N+1). Vector {X ) is de-

fined analogously to Eq. (20) for the flat layer displacement and trac-

tion boundary values, so that the actual boundary values are given by
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{X = {XI + {Xo1. (21)

The square matric [A] contains the relatively small and well behaved

submatrices from [I] and [d]. The square matrix [C] contains the

identity submatrices from [I] and the convolutional submatrices from

[G o  and [H o. Therewith Eq. (19) can be written in its final form,

which is ideally suited for an iterative solution approach:

Xn = X + [P]{Xn- + XoI , n = 1,2,... (22)

in which the zero order iterative solution {R} is given by

Mo = [C]I{F (23a)

the flat layer solution {X } is given by

{X0 } = [C]'{F} ; (23b)

and the recursive matrix operator [P] is given by

[P] = [C]JI[Xi. (23c)

Note that {Xo', {Xo and [P] are all independent of iteration number n

and are efficiently calculated all at once in the Fourier transform domain

as the inverse operation involving matrix [C) decouples into a simpler

deconvolutional problem.

The nth iteration estimates to the perturbed boundary values are

obtained by recycling the values from iteration number n-1 through the

right-hand side of Eq. (22) to obtain an improved solution to the un-
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known perturbed boundary values. The recursive process in Eq. (22)
is numerically stable and convergent. The convergence proof would
require a detailed discussion of the norm of matrix [P] in Eq. (23c)
and will not be presented here. However, in all cases where the
technique has been applied, the successive iterations have exhibited
convergent behavior. As the number n of successive iterations is

the boundaries is also increased. Also, the zero order iteration is
often considerably more accurate than the approximate Kirchhoff
solution of the previous chapter and is useful in itself.

Once the desired number of iterations has been carried out, the final
solution for the unperturbed boundary values is obtained from Eq. (21)
in which the final solution to the perturbed boundary values [R) is
given by the nth order iteration in Eq. (22) and the flat layer solution
[X 0} is given by Eq. (23b). Then, analogous to the final propagation
step in the Kirchhoff solution technique, the displacement field at any
additional locations within any layer is obtained at this frequency by
introducing the boundary values from Eq. (21) into the representation
theorem of Eq. (1). Time domain results, if desired, would be obtained
through Fourier synthesis by calculating the iterative BIE solution at a

discrete set of frequency values.

4.2 Results
An iterative frequency domain BIE algorithm has been developed for

IDtreating three simple cases using the methodology outlined in

Section 4. 1. The three cases include the following two-dimensional
acoustic problems: (1) wave propagation in a semi-infinite space with
an irregular free surface; (2) wave propagation through an irregular
interface in an infinite space; and (3) wave propagation in a layer
overlying a semi-infinite space with an irreigular interface and a flat
free surface. The results for these simple cases illustrate the
effectiveness of the iterative BIE technique and are presented in this
section. Extensions to a more general iterative B IE algorithm are
discussed in Chapter 5.
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A comparison between the Kirchhoff solution (from Section 3.1) and the

iterative BIE solution (from Section 4.1) is presented in Figures 8 and

9 for the case of a plane monochromatic wave in a semi-infinite space

normally incident to an irregular free surface with a simple bump. The

power density of the scattered field is shown in Figure 8 at a

frequency corresponding to a horizontal wavenumber (w/cu) of 1 .5 for
the half-space. The Kirchhoff solution is shown in the upper left plot

with the zero order, first order and successive iterations of the BIE

solution shown in the center left, lower left and right-column plots,

respectively. In each of the six plots, the response is shown as a

function of increasing horizontal position and increasing vertical depth

into the half-space with the amplitudes color scaled between dark red

for the maximum value through yellow, green and light blue for the

intermediate values, down to dark blue for the minimum value (zero for

the power density plots). It is seen that the Kirchhoff solution fails to

reproduce the diffractive effects arising along the incline of the surface

bump. By the second iteration of the iterative BIE soluton, these

diffractive effects are nicely produced and convergence is verified by
comparison to the third and fourth iteration plots. Even the zero order

BIE solution is considerably more accurate than the Kirchhoff solution.

The corresponding time domain comparisons are shown in Figure 9. For

the time domain plots, the vertical axis represents the horizontal

receiver positions as a function of increasing distance along a flat line

several grid dimensions below the reference plane of the irregular free

surface. The color coding convention is the same as in 7:igure 8 with

red being the most positive (at the focus of scattered energy) and dark

blue being the most negative (along the reflected power plane wave).

The response has been convolved with a Gaussian-shaped wavelet. The

largest deficiencies evidenced in the Kirchhoff solution in the upper left

plot are the inaccurate amplitudes and inaccurate travel-time delays for

the later diffractive arrivals, substantiating the indicated deficiencies at

the particular frequency used in Figure 8. The excellent convergence

of the BIE solution in the time domain verifies that the technique works

equally well at low and high frequency. Also, there are no edge
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Figure 8. Comparison of the power density of the scattered field due
to a vertically incident plane wave impinging on the free
surface with a bump between the Kirchhoff solution and the
various iterations of the more rigorous BIE solution. All
plots are scaled to absolute range (0.1, 3.0).
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Figure 9. Corresponding comparison to Figure 8 in the time domain
between the Kirchhoff solution and the iterative BIE
solutions along a line of receivers located several grid
dimensions below the free surface. All plots are scaled to
absolute range (-1.0, 0.5).
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reflections contaminating the signal verifying that the technique

effectively avoids these spurious arrivals. Again, even the zero order"

BIE solution is considerably more accurate than the Kirchhoff solution.

The next three figures show the sensitivity of the iterated BIE solution

to various model parameters for the case of a simple bump on the free

surface of a half-space. In Figure 10, the power density of the

scattered field due to a normally incident plane wave is compared at six

frequencies from low frequency (upper left plot with k=0.1) to high

frequency (lower right plot with k=2.1) with each plot self-scaled. The

most obvious trend to notice in these six plots is the increasingly

focussed reflections and diffractions from the surface bumps as the

frequency is increased. At low frequency, the wavelength is

approaching or exceeding the dimensions of the surface bump, reducing

the diffractive effects and causing the bump to act like a point source

emitter. In Figures 11 and 12, the iterated BIE solution due to a

normally incident plane wave is compared for different size surface

bumps in the frequency domain and time domain, respectively. The

power density of the scattered field at an intermediate frequency

corresponding to k=1.5 is shown for no bump in the upper left hand

plot to the largest bump in the lower right hand plot, with all plots

displayed using the same absolute color scaling. As expected, there is

no scattered field for the flat free surface with increasingly large-

scattered energy and larger dispersion of diffractive energy as the

bump is increased in size. The analogous results in the time domain

including the reflected wave are shown in Figure 12 for a line of

receivers located several grid dimensions below the free surface. All

six plots are displayed using the same absolute color scaling with the

most negative arrivals (dark blue) corresponding to the reflected plane

wave and the most positive arrivals (red) corresponding to the maximum

scattered field.

The next four figures show the sensitivity of the iterated BIE solution

to various model parameters for a more arbitrary irregular free surface.

In Figures 13 and 14, the scattered power density field is shown for

vertically incident and obliquely incident (30 degrees from vertical)

plane waves, respectively. In both figures, the field is compared at
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Figure 10. Power density of the scattered field due to a .ertically
incident plane wave impinging on a free surface %ith a
bump calculated with the iterative E3IE technique at six
different frequencies. All plots are self-scaled.
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Figure 11. Comparison of the power density of the scattered field for
the free surface with a bump as a function of the amplitude
of the bump. All plots are scaled to absolute range
(0.1, 3.0).
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Figure 12. Corresponding results to Figure 11 in the time domain for a
line of receivers located several grid dimensions below the
free surface. All plots are scaled to absolute range (-1.0,
0.5).
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Figure 13. Power density of the scattered field due to a vertically
incident plane wave impinging on a highly irregular free
surface calculated with the iterative BIE technique at four
different frequencies. All plots are self-scaled.
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Figure 14. Analogous results to Figure 13 for a plane wave incident at
30 degrees from vertical. All plots are self-scaled.
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four different frequencies corresponding to wavenumbers of 0.1, 0.5,

1.0 and 2.0 in the upper left, lower left, upper right and lower right

plots, respectively. As anticipated from the analogous sensitivity study
in Figure 10 for the case of a simple bump irregularity, increasingly

focussed reflections and diffractions are observed from the surface
irregularities as the frequency is increased. Again, at low frequency,

the wavelengths are approaching or exceeding the dimensions of the

surface irregularities, which reduces the diffractive effects and causes
the irregularities to resemble local point source emitters. Time sections

for both angles of incidence considered in Figures 13 and 14 are

displayed in Figure 15 for a line of receivers located just below the free

surface. The normal incidence section is on the left and the oblique

incidence section is on the right and are in the same format as the
plots of Figures 9 and 12. As anticipated from the power density fields

at the sampling of frequencies shown in Figures 13 and 14, all

diffractive effects are accurately simulated in the iterative BIE solution

and there are no spurious edge effects.

In Figure 16, the sensitivity of the time section for the obliquely

incident plane wave case of Figure 15 is examined with respect to

amplitude of the surficial irregularities. The four time sections

represent the iterated BIE response compared with surficial

irregularities of four different amplitudes, respectively. All four plots

are displayed using the same absolute color scaling. In the lower left
plot, the surficial irregularities are sufficiently small relative to the

shortest wavelengths considered in the calculation that the scattered
energy is negligible compared to the primary reflected wave. As the

surficial irregularites are increased, the scattered energy increases and
the diffracted waves are seen to be as large in absolute value as the

primary reflected wave.

The case of propagation through an interface is considered in Figures

17 through 20. The first two of these figures demonstrate the accuracy

of the iterative BIE technique for this case. In Figure 17, the power

density of the scattered transmitted field through the interface is

compared using the zero order BIE solution for an impedance contrast
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Figure 15. Iterative BIE time domain solution corresponding to Figures
13 and 14 for a line of receivers located several grid
dimensions below the free surface. Both plots are
self-scaled.
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Figure 16. Comparison of iterated time domain solution for the highly
irregular free surface as a function of the amplitude of the
irregularities. All plots are scaled to absolute range (-1.0,
0.5).
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Figure 17. Comparison of power density of the scattered field due to
propagation through an interface with and without an
impedance contrast using the zero order BIE solution. Both
plots are scaled to absolute range (0.0, 3.5).
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Figure 18. Magnification of power density of the scattered field for the
zero impedance contrast case from Figure 17 as a function
of iteration number, showing convergence to null solution.
Both plots are scaled to absolute range (0.0, 0.2).
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Figure 19. Power density of the scattered field due to propagation
through an interface as a function of angle of plane wave
emergence (critical angle at 30 degrees). All plots are
self-scaled.
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Figure 20. Power density of the scattered field due to propagation
through an interface at intermediate and high frequencies.
All plots are self-scaled.
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of 1.5 in the left plot and no impedance contrast in the right plot.
Both plots are displayed on the same absolute color scale and as
expected, no transmitted scattered energy is displayed for zero
impedance contrast. The field for the zero impedance contrast case is
magnified in the left plot of Figure 18 showing the numerically null
solution. While the field is negligible compared to the finite impedance
contrast case in Figure 17, the numerical solution is never exact.
Fortunately, however, the iterated BIE solution converges to the exact
solution as more and more iterations are performed as demonstrated in
the right plot of Figure 18 with the next order iterated solution
converging an order of magnitude closer to the exact solution.

In Figures 19 and 20, the acoustic velocity above the interface is twice
the velocity below the interface, so that the critical angle of emergence

is 30 degrees from vertical. The power density of the scattered
transmitted field at an intermediate frequency is shown in Figure 19 as
a function of emergence angle. As demonstrated by the sequence of
plots for a planar interface from pre-critical emergence in the left
column of plots to post-critical emergence in the upper right plot, the
iterative BIE approach provides the correct results under all cases. In
particular, the critically refracted waves in the upper right plot
properly decay as a function of distance from the boundary (note that
these waves can not be simulated using the approximate Kirchhoff
solution technique). The post-critical case is repeated in the lower
right plot for a simple non-planar interface. The important feature to
notice is how the bump acts like a point source and radiates a
significant amount of energy in the general direction of the incoming
wave that would otherwise be absent as shown in the upper right plot.
In the case of a multilayered half-space, irregularities along interfaces

will give rise to late arriving head wave energy at the free surface that
would otherwise not be evidenced with planar interfaces. In Figure 20,

the power density of the scattered transmitted field due to normally
incident propagation through simple non-planar interfaces is compared
at intermediate and high frequency (three times intermediate value).
The comparison is performed for irregular interfaces consisting of a
single bump and a double bump in the left and right columns,
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respectively. The important feature to notice here is the significant

beaming of the scattered field at high frequency (lower rowv of plots) in

contrast to the simple point-source like emissions from the irregularity

at low frequency.

The case of propagation through an irregular interface with a flat free

surface overhead is considered in Figure 21. The acoustic velocity in

the layer is half the value of the underlying half-space. The power

density of the scattered field due to a vertically incident plane wave is

compared at intermediate and high frequencies (twice the intermediate

value) in the left and right plots, respectively, for a relatively thick

layer. As in Figure 20, much more focussing is experienced at high

frequency (right plot) and surface waves can be observed along the

free surface at lower frequency (left plot) which decay exponentially as

a function of depth for the thick layer. The center plot is the same as

the left plot except that the layer thickness is considerably reduced

giving rise to a large trapped surface wave propagating bilaterally away

from the irregularity for the normally incident plane wave.
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Figure 21. Power density of the scattered field due to
propagation through an irregular interface with a
flat free surface overhead. All plots are
self-scaled.

SGI-R-83-083





65

5.0 RECOMMENDED EXTENSIONS OF THE ITERATIVE BIE ALGORITHM

An iterative BIE algorithm has been developed for acoustic, two-

dimensional structures having no more than a single irregular layer

overlying a semi-infinite half space. The simplicity of the algorithm has

allowed efficient testing of the methodology and refinement of the

iterative procedure. Results for the simple cases supported under this

algorithm were presented in Section 4.2 and are quite useful in

providing new insights into wave propagation problems in,/olving

irregular interfaces. Now that the method has been shown to be

reliable, complete and highly efficient (relative to finite difference type

techniques), a more general iterative BIE algorithm is needed to study

more complex wave propagation problems.

The formulation in Section 4.1 is completely general for an irregular,

multilayered, elastic, three-dimensional half-space and the solution

technique is outlined in detail. The most straightforward extension of

the algorithm is to the case of a multilayered, two-dimensional half-

space because the Green's functions are the same as for the single

layer, 2-D case and the deconvolutionat form of the BIE matrix equation

can still be handled with one-dimensional Fourier transform techniques.

However, the two-dimensional class of problems is limiting and the next

recommended extension is to the three-dimension case. The extension

to the full multilayered, 3-D case is straightforward in theory with the

Green's functions simplifying to exponential functions from Hankel

functions (refer to Appendix A) and with the deconvolutional form of

the BIE matrix equations handled with two-dimensional Fourier transform

techniques. The efficiency of the 3-D code will depend very strongly

on optimized handling of the large core requirements and spatial

gridding requirements as a function of frequency. It is anticipated

that with sufficient effort on developmental efficiency, the code will

execute up to an order of magnitude faster than finite difference type

codes.

It is recommended that the matrix formalism be retained in all

extensions of the algorithm to permit optimally efficient execution

through use of array processing hardware if desired. Also, the elastic
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case should be explicitly supported as the form of algorithms is the

same with just more bookkeeping required for the expanded set of

nontrivial components at each node, and a number of source types

should be explicitly supported including point forces, explosions, point

dislocations, and finite sources.
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APPENDIX A. Infinite-space Green's functions

Expressions for the infinite-space Green's functions are given in this

appendix for two and three dimensional wave propagation problems in

acoustic and elastic material. In each case, the displacement and stress

fields at location y due to an impulsive point source at location x are

presented as dimensionless quantities per unit force in the frequency

domain for compatibility with the frequency domain BIE method.

1. Three-dimensional, elastic case

The dimensionless displacement field per unit force is given by

2 ik
(4npR)G m(X,y;w) = [im (1+3d ) 6 md U y e

-ik

- [£m(1+3d ) -6£m(+d )] e (A-1)

in which G2m(X,y;w) is the k-component of the complex displacement

field at location y and frequency w due to a point source in the m-

direction at location x with Q,m=1,2,3. The first main term on the

right-hand side corresponds to the compressional wave traveling at a

velocity a and the second main term corresponds to the shear wave

traveling at a velocity P. The various quantitives appearing in

0 Eq. A-1) are defined by the following relations:

x- (XVX2,X3) = source location; y = (y 1,Y2 ,y3 ) receiver location;

-* -X. y 2 (2 2) 2 + (Y3_ )3)
R ly-x + [(Yl-Xl)2+3+ }]3

Xem =  ; y-x)IR , m = 1,2,3

62M = 1 if k=m; 6£m = 0 if ktm;

a2 = (p+2X)/y P 2 = p/p ; Y= /

p,X = Lam4 constants ; p = density

k = w/a ; k = W/o i = (-I)

da = (ikaR)l 1+(ikaR)-11 ; d = (ik R)-I [l+(ik R)-11.
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In the limit as source and receiver point coincide, R goes to zero

causing singularities of the form R" J , j=1,2,3 in Gkm. Conversely, in

the limit as R goes to infinity, the near-field terms involving da and d P

vanish leaving a geometrical attenuation rate of (1/R). Material

attenuation may be introduced by designating imaginary parts to the

velocities a and P so that the exponential functions provide further

decay at large distances. Also, these imaginary parts may be specified

with arbitrary frequency dependence.

The corresponding dimensionless orders stress field per unit force is
6 given by

4.2 n( = [2y 2 (ik R + 6 + 15d )]4TR GQ n( , W mn 2 o ~ l

+d emn[(2y -1)ik UR + (4y -1) + 6y d U]

2 -ik R

+ (dmn+d mn2 )[2y 2 (1+3d a)4 e C'

+ { £m[2(ikPR + 6 + 15d) - emn[2(1+3d )]

] - ikpR(d nm+d)mn2)[ik R + 3 +6d ]e (A-2)

in which G mn(X,y;w) is the £m-component of the complex stress field

at location y and frequency w due to a point source in the n-direction

at location x with £,m,n = 1,2,3. Again, the first and second main

terms on the right-hand side correspond to the compressional and shear

waves, respectively. Those quantities appearing in Eq. (A-2) that

were not used in Eq. (A-i) are defined by the following relations:

X2 mn X R X mXn ; demn = i n

The singularities in the stress components G£m n are of the form R- j ,

j=1,2,3,4 as R goes to zero which is one order higher than the

corresponding singularities in the displacement components. However,

the far-field geometrical (and material) attenuation behavior is the same

as described for the displacements.
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The £-component of the complex traction field at location y is then

obtained using Cauchy's formula by forming the dot product of the

stress tensor with the unit normal vector v at that point:

Hkn (X,y;wJ) = G mjn(X,y;W) • Vm (y) ,m=1,2,3. (A-3)

2. Three-dimensional, acoustic case

The dimensionless displacement field per urit force is given directly

from Eq. (A-i) to read:

-ik
[47(X+21J)R]G m(X,y;w) = [Xkm(1+3da) - 6m d oI e (A-4)

with the corresponding dimensionless stress field per unit force given

directly from Eq. (A-2) to read:

47 2 G(xy) = -e£mn[2y 2 (ik R + 6 +1d )1

+ d9mnl[(2y 21)ik aR + (4y -1) + 6y 2d ]

+ (d mn+dmnk)[2Y2 (1+3da )]} e R (A-5)

The traction field may then be evaluated by introducing Eq.(A-5) into

i Eq. (A-4).

3. Two-dimensional elastic case

The Green's functions are presented for the two-dimensional case of

antiplane strain. There is only one nonzero displacement component

and one nonzero traction component for antiplane strain. Assuming that

x 2 is the translational direction, the the dimensionless displacement

component per unit force is given by
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•2,(2) (H2)(kr

4pG2 2(XlX 3 ;Y1 ,Y3 ;W) = -iy H ((kr) - iH( (k 0)(A-6)

in which H ( 2 ) is the Hankel function of the second kind of order n andn 2 2 1-2
r = [(x 1 -Yl) + (x 3 -Y3) 2f. The corresponding dimensionless traction

component per unit force is given by:

4rH22 (XlX 3 ;yl'y3;w) = ika(y3 x3)H(
2 ) (kar)

+ ik(y 3-x3)H
2 ) (k r) (A-7)

In this case, the singularities arising when source and receiver points

coincide (r=O), occur for the displacement component in Eq. (A-6) in

the imaginary part of the zero order Hankel function, exhibiting

logarithmic behavior (i.e., Bessel function of the second kind

Y0 (z) -(2/n)ln(z) as z approaches zero). For the stress components

in Eq. (A-7), the singularities occur in the imaginary part of the

Hankel functions of order 1 (i.e., Bessel function Y 1 (z) -- -(2/n)/z as z

approaches zero). The cases of plane strain or plane stress exhibit

similar singularity behavior.

4. Two-dimensional acoustic case

The displacement and traction components are given directly from

Eqs. (A-6) and (A-7) to read:

4(X+2p)G 22 (X1 x 2 ;yly 3 ;w) = (2) 0(ka r) (A-8)

4rH 22(X1,X3;Y1,Y3 ;W) = ik(Y 3-X3) H 1 (k r) (A-9)
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